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an analysis have the potential to influence applied 
management practices.
Objectives  We use a large (n = 1902) genetic data-
set to identify population level and sex-specific func-
tional connectivity for cougars in Washington, USA.
Methods  We conducted a landscape genetics analy-
sis that pseudo-optimized resistance surfaces for the 
full sample of cougars as well as for male and female 
groups. We then modeled connectivity across the top 
performing resistance surfaces with resistant kernels.
Results  The top resistance surface for females had 
higher resistance and lower connectivity than the 
males and had more spatial variability. However, we 
also observed greater resistance to movement and 
a lack of connectivity for males in and around the 
Olympic Peninsula. The resistance surface and con-
nectivity models for all cougars contained both the 
broad features of the male models and the more het-
erogeneous features of the female models, indicating 
the importance of both local and regional dispersal 
and breeding.
Conclusions  In species with sex-specific differ-
ences in movement and dispersal, accounting for 
these differences can be important for understanding 
functional connectivity. For cougars in Washington, 
this revealed depressed connectivity for males on the 
Olympic Peninsula which may indicate a more imme-
diate management concern for the future of this popu-
lation than previously thought.

Abstract 
Context  Maintenance of connectivity is a com-
monly recommended strategy for species manage-
ment and conservation as habitat loss and fragmen-
tation continues. Therefore, functional connectivity 
modeling is needed for species over large geographic 
areas. However, sex-specific functional connectivity 
is rarely considered, even though the results of such 
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Introduction

Many wildlife populations are increasingly suscep-
tible to the negative effects of human development. 
Habitat loss and fragmentation decrease the availabil-
ity of resources and increase isolation, placing wild-
life, especially carnivores, at higher risk of extirpation 
(Di Minin et al. 2016; Crooks et al. 2017). To combat 
the negative effects of habitat loss and fragmentation, 
habitat protection paired with maintaining and restor-
ing broad-scale landscape connectivity are commonly 
recommended (Heller and Zavaleta 2009). Therefore, 
identifying both the spatial distribution of habitat and 
areas of connectivity is important for effective species 
conservation and management in the Anthropocene.

One of the fastest growing states in the USA is 
Washington (US Census, www.​census.​gov), and in 
the Puget Sound area alone, the human population 
is expected to almost double by the year 2050 (Puget 
Sound Regional Council, psrc.org). This may result in 
increased development which could elevate the risk 
of isolation for some cougar (Puma concolor) popula-
tions in the state. Warren et  al. (2016) and Wultsch 
et al. (in review), found that cougars in some areas of 
Washington had relatively low allelic diversity and 
levels of gene flow. In particular, the Olympic Penin-
sula may be an area of conservation and management 
concern as it had the lowest genetic variation, highest 
inbreeding coefficient, and lowest immigration rates 
of any other site in the state. Interestingly, Wultsch 
et  al. (in review) also found that the Olympics had 
relatively high emigration rates, but that immigration 
into the area from other populations was low.

Other cougar populations that are isolated by roads 
and development, such as those in southern Califor-
nia, have low heterozygosity—with the values for 
some populations approaching those of the endan-
gered Florida panther (Gustafson et al. 2019). Despite 
the general ability of cougars to move and disperse 
long distances (Stoner et  al. 2008; Hawley et  al. 
2016), dispersal to and from these populations is lim-
ited due to large freeways and intense human devel-
opment (e.g., Ernest et  al. 2014). Currently, efforts 
to increase genetic variation and reduce inbreeding 

in these populations are limited to multi-million-
dollar road crossing structures or translocation of 
individuals. Heterozygosity of the cougar population 
on the Olympic Peninsula was not reported to be as 
low as those in Florida and California, but with the 
projected human development in this region, identi-
fying and maintaining areas of connectivity could 
help prevent further isolation and offset the need for 
costly interventions. These concerns are not isolated 
to the Olympic Peninsula population: Wultsch et  al. 
(in review) found that asymmetrical migration rates 
and source-sink dynamics were identified for other 
populations in Washington. Therefore, maintaining 
connectivity across the entire state has ecological 
importance.

Connectivity models are often derived from 
species-specific observational or movement data, 
but can also be derived from genetic data (Zeller 
et al. 2012). Movement data excels at capturing fine 
scaled, real-time movement decisions by individu-
als. However, genetic data have the added advantage 
of reflecting not only movement, but also successful 
dispersal and breeding over generations. Therefore, 
functional connectivity based on genetic data repre-
sents broader scale population processes. To model 
connectivity with genetic data, a landscape genetics 
approach can be used that models genetic distances 
among populations or individuals as a function of 
resistance distance (McRae 2006) among those same 
points. Resistance distances are calculated across 
landscape features and transformed into resistance or 
cost to movement values. Landscape genetic model 
results therefore estimate the resistance of natural 
and anthropogenic landscape features to movement, 
and can be used as the basis for connectivity mod-
els. Warren et al. (2016), conducted such a landscape 
genetics study to identify resistance to gene flow for 
cougars across the state. The study found that forest 
cover was the main driver of gene flow and no other 
variables, aside from Euclidean distance, were sig-
nificant in predicting genetic distance. Warren et  al. 
(2016) acknowledged that other factors were likely 
contributing to cougar gene flow in Washington, but 
that they were not able to capture these factors in their 
analysis—nor did they model connectivity.

Since the Warren et  al. (2016) study, landscape 
genetic approaches have advanced and collection of 
genetic samples by Washington Department of Fish 
and Wildlife (WDFW) has continued, resulting in 

http://www.census.gov
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an almost tripling of the number of individual cou-
gars available for analysis. Here, we conducted a 
landscape genetic analysis for cougars (n = 1902) in 
Washington, USA, and southern British Columbia, 
Canada, to understand what variables are influenc-
ing gene flow and to predict a surface that estimates 
resistance to gene flow movement. Given the sex-spe-
cific differences in genetic diversity indices described 
in Wultsch et al. (in review), and known sex-specific 
differences in cougar dispersal behavior (Sweanor 
et  al. 2000; Stoner et  al. 2006Thompson and Jenks 
2010), we analyzed the entire population of samples 
and then conducted analyses for males and females 
separately. We predicted that males, given their 
longer dispersal distances, would drive population-
level gene flow (Sweanor et  al. 2000). Based on the 
results of Warren et al. (2016), we predicted that for-
est cover would enhance gene flow across the study 
area, but we also predicted that human development 
variables would impede gene flow. Other landscape 
genetic studies in Idaho, California, and the south-
western USA have found urban development, agricul-
ture, and roads influenced genetic differentiation and 
resistance (Balkenhol et al. 2014; Naidu 2015; Zeller 
et al. 2017). We used the predicted resistance surfaces 
from our landscape genetic analysis to model connec-
tivity for cougars across the study area and produce 
spatially explicit maps for management and conserva-
tion of cougar movement and gene flow.

Methods

Study area

The study area was statewide in Washington, USA 
and the mid-southern region of British Columbia, 
Canada (Fig.  1). Climates and vegetative communi-
ties vary considerably across the study extent from 
temperate rainforests in the west, to the sagebrush 
steppe of the Columbia Plateau, to dry coniferous for-
ests in the east. Genetic data were mostly collected 
in and around the Olympic Peninsula, the Cascade 
Range, the Selkirk and Kettle Ranges, and the Blue 
Mountains.

The Olympic Peninsula (Fig.  1a) is a temper-
ate, maritime rainforest that ranges from sea level 
to 2400  m in elevation in the Olympic Mountains. 
Annual precipitation varies in the Olympic Mountains 

but averages 152 to 406  cm. Annual average mini-
mum temperature in January is—1 °C and the aver-
age maximum temperature in July is 23 °C. Common 
prey species include black-tailed deer (Odocoileus 
hemionus columbianus), elk (Cervus elaphus), and 
beavers (Castor canadensis).

The Cascade Mountains (Fig. 1b) are rugged with 
elevations ranging from sea level to almost 4400 m at 
Mount Rainier. The western slopes experience a mar-
itime climate with an annual average precipitation of 
251 cm, while precipitation on the eastern slopes var-
ies from 25 to 254  cm annually depending on loca-
tion. Annual average minimum temperature in Janu-
ary is —4 °C and the average maximum temperature 
in August is 21  °C. Common prey species include 
black-tailed deer, mule deer (O. hemionus), white-
tailed deer (O. virginianus), and elk.

The Selkirk and Kettle Ranges (Fig. 1c) are char-
acterized by mountainous terrain in the southern por-
tion of the Selkirk Range, with elevations ranging 
from 500 m to 2200 m. Annual precipitation averages 
48 cm. Annual average minimum temperature in Jan-
uary is – 9 °C and the average maximum temperature 
in August is 25  °C. Primary prey consists of white-
tailed deer, mule deer, elk, and moose (Alces alces).

The Blue Mountains (Fig. 1d) in southeast Wash-
ington represents the northern portion of this moun-
tain range, which is part of the Columbia Plateau. 
Elevations range from several hundred meters above 
sea level along the major drainages of the Snake and 
Columbia Rivers to 1950  m on Oregon Butte. The 
region is characterized by hot dry summers and mild 
winters with mean temperatures ranging from – 7 °C 
in January to 37  °C in July. Annual precipitation, 
averaging 76  cm, falls primarily as snow between 
November and February. Prey in this area consists of 
mule deer, white-tailed deer, and elk.

Genetic sampling

Cougar tissue samples were obtained across Wash-
ington by WDFW personnel from 2003 to 2018. 
Overwhelmingly, tissue samples were obtained dur-
ing mandatory inspections of hunter kills. A much 
smaller number of samples were opportunistically 
included from research captures statewide. Additional 
samples from south-central British Columbia were 
obtained in cooperation with compulsory inspectors 
for the British Columbia Ministry of Forests, Lands 
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and Natural Resource Operations from 2003 to 2010. 
Genetic samples were assigned to the GPS coordi-
nates of the kill or capture, when possible, or inferred 
using geographical descriptions given by hunters. 
Capture locations were accurate, however hunter 
collected information was estimated to be accurate 
to 10 km. Tissue samples were processed and geno-
typed at 18 microsatellite loci by WDFWs Molecular 
Genetic Laboratory (more information provided in 
Warren et al. 2016 and Wultsch et al. in review). Loci 
were polymorphic with a total of 108 alleles detected 
and an average of 6 alleles per locus. Mean observed 
and expected heterozygosity was 0.52 and 0.59, 
respectively. Genotyping resulted in identification of 
1,825 individuals in Washington state (896 females, 
853 males, 98 unknown sex), and 55 individuals in 
British Columbia (6 females, 49 males), for a total of 

1,902 cougars. Population genetic analyses of these 
data are presented in Wultsch et al. (in review).

Landscape data

We selected 11 variables known to affect cougar habi-
tat use, movement, and gene flow. These included 
topographic, human development, and vegetation var-
iables (Table  1). All variables were projected to the 
Albers Conic Equal Area projection and resampled 
to a 90 m pixel size. Other studies have demonstrated 
cougars respond to environmental variables at differ-
ent spatial scales (Wilmers et  al. 2013; Zeller et  al. 
2017). Therefore, to determine the scale of effect 
(Jackson and Fahrig 2015; McGarigal et  al. 2016) 
for cougar gene flow for each variable in our study, 
we smoothed the variables with a Gaussian kernel 

Fig. 1   Male and female cougar genetic sample locations and greater study area in Washington, USA and south-central British 
Columbia, Canada, 2003–2018
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at the following bandwidths, 90 m, 500 m, 1500 m, 
and 3000  m. These bandwidths correspond to the 
average movement rate of cougars in Washington 
State over 10 min, 2 h, 6 h, and 12 h (Kertson et al. 
2011)  —  time periods over which cougars may be 
making movement decisions and responding to land-
scape features. Smoothing was performed with the 
‘smoothie’ package (Gilleland 2013) in R software (R 
Core Team 2021).

Resistance surface generation

For each geospatial variable, the raw values were con-
verted to resistance (where high resistance equates to 
low levels of gene flow and vice versa). We did not 
assume a relationship between the raw values of an 
environmental layer and resistance to gene flow a 

priori. Instead, we tested seven different transforma-
tional forms (from Peterman 2018) to determine the 
most appropriate transformation; three represent-
ing positive relationships, three representing nega-
tive relationships, and one representing a curvilinear 
relationship similar to a quadratic (Fig.  2). For the 
positive linear, positive monomolecular convex, and 
positive monomolecular concave transformations, 
resistance increased with increasing values of a vari-
able. For the negative linear, negative monomolecular 
convex, and negative monomolecular concave trans-
formations, resistance decreased with increase val-
ues of a variable. The inverse ricker transformation 
represented cases where moderate values of a vari-
able had the lowest resistance. We transformed each 
scaled variable by range rescaling the surface from 1 
to 100 and then applied each transformation to create 

Table 1   Geospatial variables used for developing landscape genetic resistance models for cougars in Washington, USA, and south-
central British Columbia, Canada, 2003–2018

Variable Description Source

Development Road density Line density of primary, secondary, and 
tertiary roads

Derived from Open Street Map Contributors 
(2020)

Building density Point density of Microsoft building foot-
print data set calculates as buildings per 
square kilometer

Microsoft building footprint data (2019)

Land cover Percent tree cover Percent tree cover Hansen et al. (2013)
Shrubs Shrubs from U.S. National Land Cover 

Database and British Columbia Baseline 
Thematic Mapping Data

British Columbia Government (2019); Yang 
et al. (2018)

Grassland Grasslands from U.S. National Land Cover 
Database and British Columbia Baseline 
Thematic Mapping Data

British Columbia Government (2019); Yang 
et al. (2018)

Agriculture Agriculture from U.S. National Land Cover 
Database and British Columbia Baseline 
Thematic Mapping Data

British Columbia Government (2019); Yang 
et al. (2018)

Rivers and streams Rivers and streams from the National 
Hydrography data set and the British 
Columbia Freshwater atlas

USGS (2017); British Columbia Govern-
ment (2015)

Topography Elevation Digital elevation model USGS (2016)
Terrain ruggedness index Calculated from the digital elevation model 

using the ‘terrain’ function in R (Hijmans 
2021)

Ridges Derived from topographic position index, 
which was calculated from the digital 
elevation model using the ‘terrain’ func-
tion in R (Hijmans 2021)

Canyons Derived from topographic position index, 
which was calculated from the digital 
elevation model using the ‘terrain’ func-
tion in R (Hijmans 2021)
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resistance surfaces with values from 1 to 100. This 
process created 336 univariate resistance hypotheses. 
Due to computational limitations with the landscape 
genetic models, and uncertainty in spatial location of 
some hunter harvested samples, we resampled all lay-
ers to a 900 m pixel size for analysis.

Landscape genetic analysis

We calculated pairwise Euclidean distances among 
the 1902 individuals and generated a Euclidean dis-
tance matrix with the ‘rdist’ package (Blaser 2020) 
in R. For genetic distance, we calculated the propor-
tion of shared alleles among all pairwise individu-
als and generated a genetic distance matrix with the 
‘adegenet’ R package (Jombart 2008; Jombart and 
Ahmed 2011). A recent study has demonstrated 
that the proportion of shared alleles performed well 
for predicting the relationship between genetic dis-
tance and landscape distance with large sample sizes 
(n > 1000) (Shirk et  al. 2017). We calculated resist-
ance distance between all pairwise sample locations 
across each univariate resistance hypothesis with 
the costDistance function in the ‘gdistance’ package 
(van Etten 2017) in R. We then fit a univariate linear 
mixed effects model that accounted for the pairwise 

structure of distance matrices with the maximum 
likelihood population-effects method (MLPE; Clarke 
et al. 2002; Van Strien et al. 2012), using code from 
the ‘ResistanceGA’ package (Peterman 2018; Peter-
man et al. 2014) with restricted maximum likelihood 
set to false. In these models, the genetic distance 
matrix was our response variable, and the resistance 
distance matrix and Euclidean distance matrices were 
our predictor variables. The MLPE method has been 
shown to outperform other popular correlation meth-
ods in landscape genetics such as multiple regres-
sion with distance matrices or causal modeling with 
Mantel tests (Shirk et  al. 2018). Furthermore, Row 
et al. (2017) found performance of MLPE models to 
increase with the addition of Euclidean distance as a 
variable. This helps to further account for the auto-
correlation structure of pairwise distance matrices 
and reduces the selection of spurious variables (Row 
et al. 2017). We also ran a model to test the isolation 
by distance hypothesis by only using the Euclidean 
distance matrix as the predictor variable.

We evaluated the univariate resistance hypoth-
eses for a variable by comparing Akaike’s Infor-
mation Criterion corrected for small sample sizes 
(AICc; Burnham and Anderson 2002) values. The 
model with the lowest AICc value for a variable was 

Fig. 2   Transformations tested to obtain genetic resistance hypotheses for development, land cover, and topographic variables at vari-
ous spatial scales for cougars in Washington, USA, and south-central British Columbia, Canada, 2003–2018
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identified along with the scale and transformation to 
resistance. We also calculated BIC and marginal R2 
for the models with the ‘MuMIn’ R package (Naka-
gawa and Schielzeth 2013; Bartoń 2019) to assess 
variance explained by a predictor. Conditional R2 
values are also reported. We based model selection 
on the AICc values since Row et  al. (2017) found 
marginal R2 values were biased toward more com-
plex models.

For our multi-variable hypotheses, instead of 
including each variable in the model in the tradi-
tional additive fashion, we summed all variables in 
a model to create a single resistance surface across 
which resistance distance was calculated. This 
approach correctly collapses all sources of resist-
ance into a single layer and estimates the genetic 
distance response across this composite surface 
(Peterman and Pope 2021). Peterman and Pope 
(2021) pointed out that individuals moving across a 
landscape are not parsing out the individual contri-
butions of each landscape element (e.g., land cover 
type vs elevation vs development), but are instead 
responding to the aggregate landscape. Therefore, 
our multi-variable procedure was as follows: (1) we 
summed all combinations of the final variables at 
their selected scale and resistance transformation; 
(2) we rescaled the summed surfaces from 1 to 100; 
(3) we calculated resistance distance across these 
composite surfaces; and (4) we fit MLPE for each 
composite surface including Euclidean distance as 
an additional variable as above. We assessed cost 
distance correlations among predictor variables 
with partial mantel correlations using the vegan 
package (Oksanen et  al. 2022) in R and only ran 
models with variables below a correlation of |0.6| 
(Correlation matrices are provided in Appendix 2). 
We again compared models with AICc values and 
report the composite resistance model with the low-
est AICc value.

We repeated the above procedure for females and 
males separately to determine if there were any sex 
specific effects of landscape structure on cougar gene 
flow. To help interpret our findings, we also calcu-
lated the local extent of breeding, or sigma, for males 
and females (Shirk and Cushman 2014). Specifically, 
we used the ‘sGD’ R package (Shirk and Cushman 
2011) to infer the radius of Wright’s genetic neigh-
borhood (Wright 1946) from the male and female 
cougar genotypes.

Functional connectivity analysis

We assessed connectivity with resistant kernels 
(Compton et  al. 2007) which accumulate cost and 
distance from source points placed on the landscape 
and result in a continuous surface that represents 
movement density across the landscape. We sampled 
20,000 points across the study area with the ‘Cre-
ate Spatially Balanced Points’ tool (Theobald et  al. 
2007) in ArcMap 10.5.1 (ESRI 2016) as follows. We 
took the linear inverse of the top resistance surface 
and rescaled it from 0–1. We also masked out areas 
of high building density, so we only sampled source 
points in areas that had a building density of < 25 
buildings/km2. We used this tool to sample points 
more frequently in areas of low resistance while still 
obtaining a good coverage of source points across 
the study area. We then used these source points 
along with the top resistance surfaces to create resist-
ant kernels with the software UNICOR (Landguth 
et al. 2012). Resistant kernels require a cost distance 
threshold to be specified where the kernels will stop 
spreading from each source point when the thresh-
old is reached. We used 500,000 as the cost distance 
threshold for cougars in Washington, which would be 
equivalent to a distance of 500 km across a landscape 
with no resistance. We selected this value since it is 
double the maximum dispersal distance for cougars 
in Washington (unpublished data), and accounts for 
the fact that dispersal across real landscapes will have 
inherent resistance.

Results

Variable scales and transformations

For all cougars, males, and females, resistance to 
gene flow increased with increasing values of agri-
culture, building density, and road density (Table  2, 
Appendix 1). Resistance was lowest at moderate val-
ues of tree cover, grasslands, and rivers and streams. 
Resistance to gene flow decreased with increasing 
values of shrub and ridges. Responses to other vari-
ables differed by sex. All univariate models outper-
formed the isolation by distance hypothesis (Table 2). 
Females had larger scales of effect for elevation and 
canyons than all cougars, while males had a larger 
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Table 2   Summary of best performing univariate resistance 
models by variable, scale, and transformation to resistance 
for male and female cougars (A; n = 1902), females only, (B; 

n = 902), and males only (C; n = 902) in Washington, USA and 
south-central British Columbia, Canada, 2003–2018

Model AICc and BIC values, and marginal and conditional R2 values are reported. Variables in bold are variables that were in the 
best performing composite resistance surfaces. More information about composite resistance surface performance is provided in the 
text

Variable Scale Transformation AICc BIC mR2 cR2

(A) Male and female
 Elevation 500 m Inverse ricker − 4,239,938 − 4,239,875 0.1788 0.4436
 Tree Cover 500 m Inverse ricker − 4,229,066 − 4,229,004 0.1223 0.3793
 Shrub 90 m Negative monomolecular concave − 4,228,210 − 4,228,148 0.1606 0.4303
 Ruggedness 3000 m Negative monomolecular concave − 4,219,095 − 4,219,033 0.0826 0.3462
 Rivers and streams 90 m Inverse ricker − 4,218,115 − 4,218,053 0.0870 0.3510
 Grassland 3000 m Inverse ricker − 4,214,024 − 4,213,962 0.0987 0.3753
 Agriculture 3000 m Positive monomolecular concave − 4,213,845 − 4,213,783 0.0895 0.3504
 Building density 3000 m Positive monomolecular convex − 4,213,776 − 4,213,714 0.0940 0.3655
 Canyons 500 m Positive monomolecular concave − 4,211,714 − 4,211,652 0.1060 0.3715
 Road density 90 m Positive monomolecular convex − 4,211,433 − 4,211,371 0.0843 0.3522
 Ridges 500 m Negative linear − 4,206,801 − 4,206,739 0.0785 0.3527
 Euclidean distance NA NA − 4,202,012 − 4,201,963 0.0633 0.3394

(B) Female
 Tree Cover 500 m Inverse ricker − 959,643 − 959,589 0.1639 0.4137
 Elevation 3000 m Negative monomolecular concave − 958,209 − 958,154 0.1689 0.4257
 Shrub 90 m Negative monomolecular concave − 957,073 − 957,018 0.1720 0.4351
 Rivers and streams 90 m Inverse ricker − 955,093 − 955,039 0.1113 0.3635
 Agriculture 3000 m Positive monomolecular concave − 954,407 − 954,352 0.1186 0.3665
 Ruggedness 3000 m Negative monomolecular concave − 954,322 − 954,268 0.0997 0.3554
 Road density 90 m Positive monomolecular convex − 951,613 − 951,558 0.0995 0.3640
 Grassland 3000 m Inverse ricker − 951,438 − 951,383 0.1073 0.3821
 Building density 3000 m Positive monomolecular convex − 951,090 − 951,036 0.0987 0.3692
 Canyons 1500 m Negative linear − 950,841 − 950,787 0.0948 0.3642
 Ridges 500 m Negative linear − 950,521 − 950,467 0.0948 0.3650
 Euclidean distance NA NA − 949,015 − 948,971 0.0742 0.3446

(C) Male
 Elevation 500 m Inverse ricker − 941,164 − 941,559 0.1930 0.4416
 Shrub 1500 m Negative monomolecular concave − 936,532 − 936,477 0.1381 0.3962
 Ruggedness 3000 m Inverse ricker − 935,213 − 935,158 0.0769 0.3315
 Tree Cover 500 m Inverse ricker − 934,804 − 934,750 0.0941 0.3441
 Building density 3000 m Positive monomolecular convex − 934,650 − 934,596 0.0951 0.3501
 Grassland 3000 m Inverse ricker − 934,576 − 934,521 0.0960 0.3593
 Canyons 500 m Positive monomolecular convex − 934,140 − 934,085 0.1110 0.3605
 Rivers and streams 90 m Inverse ricker − 933,409 − 933,354 0.0704 0.3260
 Road density 90 m Positive monomolecular convex − 933,268 − 933,213 0.0757 0.3293
 Agriculture 500 m Positive linear − 932,546 − 932,491 0.0793 0.3333
 Ridges 500 m Negative linear − 932,196 − 932,141 0.0685 0.3306
 Euclidean distance NA NA − 931,115 − 931,072 0.0545 0.3189
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scale of effect for shrub and a smaller scale of effect 
for agriculture.

For all cougars, the composite resistance sur-
face with the lowest AICc value was comprised 
of elevation and tree cover (AICc = −  4,244,359, 
BIC = − 4,244,296; Table 2; Fig. 3a). No other com-
posite resistance surfaces generated an AIC value 
that was 10 units from the top model. The top model 
had a marginal R2 of 0.1634. For females, the com-
posite resistance surface with the lowest AICc 
value was comprised of tree cover, building density, 
agriculture, and shrub cover (AICc = −  962,602, 
BIC = −  962,547, mR2 = 0.1702; Table  2; Fig.  3b). 
For males, the composite resistance surface with 
the lowest AICc value was comprised of eleva-
tion and building density (AICc = −  941,283, 
BIC = − 941,229, mR2 = 0.1816; Table 2; Fig. 3c). To 
confirm the differences between males and females 
were not spurious results from our sample, we re-ran 
each male and female model with a random draw of 
half of the samples. The same top models for each sex 
were obtained (Appendix 3).

The top resistance surface for all cougars and 
females shows high resistance across the Columbia 
Basin. Other, subtle vegetative and topographic pat-
terns in resistance can also be seen (Fig. 3a, b). The 
top resistance surface for males reflects high resist-
ance in areas of high building density and low eleva-
tion (Fig.  3c). The resistant kernel connectivity sur-
face for all cougars and females was similar, though 
the connectivity surface for females was more het-
erogeneous (Fig.  3d, e). For males, the connectivity 
surface had similar overall patterns to all cougars, but 
had higher genetic connectivity through the Columbia 
Basin, and lower on the Olympic Peninsula (Fig. 3f). 
The estimated local extent of breeding was 25 km for 
females and 100 km for males.

Discussion

Our large dataset of 1902 cougar tissue samples 
allowed us to identify sex-specific landscape features 
affecting movement. In doing so, we found impor-
tant differences between males and females. Females 
responded to more landscape features than males, and 
had more a more heterogeneous pattern to their resist-
ance and connectivity surfaces, perhaps reflecting 
finer scaled movement decisions, or smaller breeding 

extents. Across the whole study area, males generally 
had lower resistance and higher connectivity values, 
as well as larger continuous areas of high connectiv-
ity than females, especially in the Cascade Mountains 
and across the Columbia Basin. However, we also 
observed greater resistance to movement and a lack 
of connectivity for males in and around the Olympic 
Peninsula. This may indicate a more immediate man-
agement concern for the future of this population than 
previously reported (Warren et al. 2016).

Characteristics of both the male and female mod-
els were evident in the resistance and connectivity 
surfaces derived from our full sample of cougars, 
which contradicts our first prediction that males pri-
marily drive genetic resistance for the whole popula-
tion. The resistance surface and connectivity models 
for all cougars contained both the coarse features of 
the male model and the more heterogeneous features 
of the female model. The seemingly strong effect 
of females in the all-cougar model indicates local 
breeding and gene flow have important contributions 
to broader landscape scale inference. We did find 
females had, on average, a smaller breeding extent 
than males (25  km vs 100  km), which reflects gen-
erally smaller dispersal distances of females. These 
shorter movements indicate females may be inter-
acting more strongly with local features on the land-
scape than males during successful dispersal events. 
There are two important implications of this finding 
for landscape genetic analysis with species exhibit-
ing sex-specific dispersal behavior. First, if data from 
only one sex is available, inference about landscape 
feature effects on gene flow and connectivity may be 
limited. Second, if sample sizes are large enough, and 
there are sex-specific differences in breeding extents, 
analyzing data by sex can reveal important sex-spe-
cific patterns (Portanier et al. 2018).

Female cougars generally move shorter distances, 
and, thus, are more philopatric. For example, in the 
Black Hills of South Dakota, 40% of females were 
philopatric (Thompson and Jenks 2010). We also 
found females had smaller breeding extents and there-
fore do not typically disperse as far as males. Habitat 
selection during shorter dispersal events may follow 
similar selection patterns as home range resource 
use (Fattebert et al. 2015). However, selection during 
longer dispersal events may not follow similar selec-
tion patterns and individuals may be more tolerant of 
sub-par habitat during dispersal. Keeley et al. (2016) 
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proposed that the relationship between home range 
habitat suitability and resistance to movement dur-
ing long distance dispersal events may be non-linear 
and recommended a negative exponential transforma-
tion that applied high resistance values to only the 
very lowest suitability values. Though not strongly 
supported, Zeller et  al. (2018) found that some con-
nectivity models for cougars in southern California 
performed slightly better with a negative exponential 
relationship from home range habitat suitability to 
resistance. Therefore, smaller dispersal movements, 
more typical of females, may more closely resemble 
home range use whereas longer dispersal distances 
more typical of males, may reflect more relaxed selec-
tion where avoidance is concentrated only in areas of 
very low suitability.

Our second prediction, that development would 
affect gene flow was partially supported. This result 
may be because of the inherent time lag between 
landscape change and when that change can be 
detected in genetic data (Landguth et  al. 2010). 
Development was present in the male and female 
models, but not when both sexes were combined into 
a single analysis. However, in the all-cougar model, 
the combination of elevation and tree cover, both 
with an inverse ricker relationship to resistance, also 
resulted in high resistance values in heavily devel-
oped areas. This was likely due to very high resist-
ances at low values of elevation and tree cover, which 
tended to correspond to developed areas. Although 
males and females had building density in their mod-
els, the resistance and connectivity surfaces show 
that males had a larger zone of effect for avoidance of 
highly developed areas. This aligns with other studies 
of cougars in more developed areas that have found 
higher use of developed areas by females, especially 
adult females accompanied by offspring, compared 
to males. For example, Benson et  al. (2016) found 
females fed on mule deer closer to developed areas 
and further from riparian areas preferred by males, 
suggesting mortality risk for them or their offspring 
from encounters with males may be a factor. Alter-
natively, females with offspring may be more willing 

to utilize areas of human development due to higher 
prey densities associated with rural and suburban 
areas (Holmes and Laundré 2006; Knopff et al. 2014; 
Wilmers et al. 2013). In western Washington, Kertson 
et  al. (2013) found that though females had a lower 
percentage of development in their home ranges, they 
used developed areas more intensely than males. Fur-
thermore, in the female models, tree cover seemed to 
partially mediate the negative effect of building den-
sity, whereas the final resistance model for males did 
not have tree cover.

Resistance surfaces ideally reflect movement, sur-
vival, and successful breeding. Using genetic data to 
estimate resistance can reflect all these factors. For 
example, the male surface reflects much higher resist-
ance from the Cascades to the Olympics. Though 
cause and effect are difficult to infer, this may be a 
contributing factor to, or consequence of, the high 
level of inbreeding found for males on the Olympic 
Peninsula and surrounding areas compared to females 
(Wultsch et  al. in review). Many carnivore species 
experience male biased dispersal, thus male gene 
flow is important for connecting isolated populations 
(Biek et al. 2006; Peck et al. 2017). The large disper-
sal events and associated mortality (Quigley and Hor-
nocker 2010) that male cougars exhibit coupled with 
higher competition for mates (Logan and Sweanor 
2010) and less opportunity for successful breeding 
than females may make them particularly vulnerable 
to landscape level resistance and reductions in genetic 
exchange. Although females are more philopatric, 
their smaller movements do not appear to influence 
inbreeding to the same extent as males (Biek et  al. 
2006).

Software programs like ‘ResistanceGA’ (Peter-
man 2018) and ‘radish’ (Pope and Peterman 2020) 
offer full optimization of resistance surfaces from 
genetic data. Due to our large sample size and study 
area extent, these options were not computation-
ally feasible, and we opted for a pseudo-optimiza-
tion approach. Though we could not explore the full 
parameter space, we tested seven relationships with 
resistance and multiple spatial scales and obtained 
ecologically meaningful results. Sampling design 
was another limitation of our study. Ideally, random, 
linear, or systematic sampling would be conducted 
(Oyler-McCance et  al. 2013), but our samples were 
primarily based on hunter harvest and this oppor-
tunistic sampling over many overlapping years may 

Fig. 3   Resistance and connectivity surfaces for all cougars (a, 
d), females (b, e), and males (c, f) in Washington, USA and 
surrounding areas, 2003–2018. Connectivity surfaces were 
derived using a cumulative resistant kernel connectivity model 
from source points distributed throughout the study area

◂
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have biased our results. However, our sample size 
may have been large and distributed enough to coun-
ter these effects, and a random sample of these data 
resulted in similar results, indicating the robustness of 
the sampling.

Conclusions/management implications

Most cougar populations are managed primarily 
using hunter harvest data, not genetics, to infer popu-
lation status. Typically, unless harvest drops precipi-
tously or hunter effort greatly increases, it is assumed 
that harvest numbers are indicative of the population 
and do not elicit management concern. Males are not 
generally considered as important for population per-
sistence as females and considering harvest remains 
fairly steady, cougar abundance on the Olympic Pen-
insula would appear to be robust (WDFW, unpub-
lished data). However, the high resistance levels we 
documented for male cougars suggest moderate con-
cern for connectivity to other regions. Consequently, 
interpreting management needs from harvest or 
population numbers alone, may cause wildlife man-
agers to be overconfident in the resilience of isolated 
populations.

Cougar home ranges can span hundreds of square 
miles, and clearly cross jurisdictional and political 
boundaries. Thus, it is likely that genetic management 
of cougars could be improved by establishing cross-
jurisdictional collaborations to, for example, establish 
joint management zones and objectives. For instance, 
because our analyses suggest that cougars in the Blue 
Mountains are more isolated from other populations 
in Washington, genetic monitoring, and management 
of cougars here may be better served through partner-
ships with Oregon and Idaho wildlife agencies than 
with other populations in Washington.

Our findings also have immediate conservation 
value to managers. Our results highlight areas of 
lower connectivity along Interstate 5, but also high-
light areas with relatively intact connectivity, provid-
ing movement options into and out of the Olympic 
Peninsula between Olympia, Washington and Port-
land, Oregon. With these maps, wildlife managers 
can begin the work of communication and collabora-
tion with other land managers and government enti-
ties, including the Department of Transportation, with 
the intent of earmarking these areas for protection, 

enhancement, and possibly even for wildlife cross-
ing structures, thus aiding in wildlife dispersal and 
enhancing and perpetuating the exchange of genetic 
material. This information may also provide insight 
into recovery efforts for other species on the Olym-
pic Peninsula such as translocated fisher (Lewis et al. 
2022) or naturally recolonizing gray wolf populations 
(Maletzke et al. 2016). Understanding functional con-
nectivity and how it relates to wildlife movement and 
maintenance of populations can provide important 
insights to wildlife managers.
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